Proofs for 'Mass Splitting for Jitter-Free Parallel Rigid Body Simulation'

Richard Tonge*

Feodor Benevolenski NVIDIA Andrey Voroshilov

1 Introduction

This document supplements the SIGGRAPH paper, Mass Splitting for Jitter-Free Parallel Rigid Body Simulation [Tonge et al. 2012], which defines the variables and notations used here.

2 Convergence Proof for Scalar Mass Splitting Algorithm

Lemma: For $\mathbf{v}^i \in \mathbb{R}^m, 1 \le i \le n$,

$$\left(\sum_{i=1}^{n} \mathbf{v}^{i}\right) \cdot \left(\sum_{i=1}^{n} \mathbf{v}^{i}\right) \leq n \sum_{i=1}^{n} \mathbf{v}^{i} \cdot \mathbf{v}^{i}$$
 (1)

Proof:

First we prove for all $x_i \in \mathbb{R}$,

$$\left(\sum_{i=1}^{n} x_i\right)^2 \le n \sum_{i=1}^{n} x_i^2 \tag{2}$$

Proof is by induction on n, using the inequality $2xy < x^2 + y^2$. Now apply Equation 2 to every element of \mathbf{v}_i in Equation 1.

Theorem:

The following iteration converges,

$$\mathbf{z}_{r+1} = (\mathbf{z}_r - \mathbf{E}(\mathbf{q} + \mathbf{N}\mathbf{z}^r))^+$$

$$\mathbf{E}_{ii} = \left(\sum_{j=1}^n \mathbf{J}_{ij} (n_j \mathbf{M}_j^{-1}) \mathbf{J}_{ij}^T\right)^{-1}.$$
(3)

Proof:

We will rely on [Murty 1988], equation 9.10. For each body i, its inverse mass matrix \mathbf{M}_i^{-1} is positive definite, and for j=1,2 $n_{b_{i,j}}>0$, $\mathbf{J}_{i,j}^T$ is non-zero, hence each element of the diagonal matrix \mathbf{E}^{-1} is positive. This satisfies the first condition of Eq. 9.8 [Murty 1988]. The second condition applied to iteration (3) simplifies to $2\mathbf{E}^{-1} - \mathbf{N} > 0$. Since \mathbf{E}^{-1} is positive-definite, it is sufficient to prove that $\mathbf{E}^{-1} - \mathbf{N}$ is positive semi-definite. Since for each body i \mathbf{M}_i^{-1} is positive definite, it is possible to factor it into $\mathbf{M}_i^{-1} = \mathbf{Q}_i \mathbf{Q}_i^T$, where \mathbf{Q}_i is lower triangular. For arbitrary \mathbf{x} , define \mathbf{v} as follows,

$$\mathbf{v}^{i,j} = \mathbf{Q}_{b_{i,j}} \mathbf{J}_{i,j}^T \mathbf{x}_i. \tag{4}$$

We need the index set of the non-zero blocks of J that affect body k, defined as follows,

$$C(k) = \{(i, j) | b_{i, j} = k\}, \tag{5}$$

so $|C(k)| = n_k$. Now,

$$\mathbf{x}^{T}\mathbf{E}^{-1}\mathbf{x} = \sum_{i=1}^{m} \left(n_{b_{i,1}} \mathbf{v}^{i,1} . \mathbf{v}^{i,1} + n_{b_{i,2}} \mathbf{v}^{i,2} . \mathbf{v}^{i,2} \right)$$
(6)

$$= \sum_{k=1}^{n} \left(n_k \sum_{(i,j) \in C(k)} \mathbf{v}^{i,j} \cdot \mathbf{v}^{i,j} \right)$$
 (7)

$$\mathbf{x}^T \mathbf{N} \mathbf{x} = \sum_{k=1}^n \left(\sum_{(i,j) \in C(k)} \mathbf{v}^{i,j} \right) \cdot \left(\sum_{(i,j) \in C(k)} \mathbf{v}^{i,j} \right)$$
(8)

By the previous lemma, every term of $\mathbf{x}^T \mathbf{E}^{-1} \mathbf{x}$ is greater or equal to the corresponding term of $\mathbf{x}^T \mathbf{N} \mathbf{x}$ and

$$\mathbf{x}^T \mathbf{E}^{-1} \mathbf{x} > \mathbf{x}^T \mathbf{N} \mathbf{x}. \tag{9}$$

So, $\mathbf{x}^T (\mathbf{E}^{-1} - \mathbf{N}) \mathbf{x} \ge 0$, which means that $\mathbf{E}^{-1} - \mathbf{N}$ is positive semi-definite and therefore the iteration converges.

3 Convergence Proof for Iterative MLCP with Exact Joints

Apply LCP iteration (9.9) from [Murty 1988] with $\lambda = 1$, $\omega = 1$,

$$\mathbf{E} = \begin{bmatrix} \mathbf{D}_{CC}^{-1} & 0 \\ 0 & \mathbf{N}_{FF}^{-1} \end{bmatrix}, \mathbf{K} = \begin{bmatrix} \mathbf{L}_{CC} & 0 \\ \mathbf{N}_{FC} & 0 \end{bmatrix}, \tag{10}$$

and define a new projection operator P that applies (+) only to \mathbf{z}_C . This gives the iteration

$$\mathbf{z}_{C}^{r+1} = \left(\mathbf{z}_{C}^{r} - \mathbf{D}_{CC}^{-1} \left(\mathbf{q}_{C} + \mathbf{L}_{CC}\mathbf{z}_{C}^{r+1} + \begin{bmatrix} \mathbf{U}_{CC} & \mathbf{N}_{CF} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{C} \\ \mathbf{z}_{F} \end{bmatrix}^{r} \right) \right)^{+}$$

$$\mathbf{z}_{F}^{r+1} = \mathbf{z}_{F}^{r} - \mathbf{N}_{FF}^{-1} \left(\mathbf{q}_{F} + \begin{bmatrix} \mathbf{N}_{FC} & \mathbf{N}_{FF} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{C}^{r+1} \\ \mathbf{z}_{F}^{r} \end{bmatrix} \right), \quad (12)$$

which has the same form as the block mass splitting iteration from the paper. To prove convergence we just need to show [Murty 1988] that for all $y \ge 0$,

$$\left(\mathbf{z}^{P} - \mathbf{z}\right)^{T} \mathbf{E}^{-1} \left(\mathbf{z}^{P} - \mathbf{y}\right) \ge 0. \tag{13}$$

Proof:

4 Analytical Solution for Fixed Joints

For notational convenience, let S(n,m) be a matrix of size (6n,6m) whose elements are all one, let I(n,m) be the identity matrix of the

^{*}e-mail: rtonge@nvidia.com

same size and define S(n) = S(n,n) and I(n) = I(n,n). Now we can write

$$\mathbf{F}_{\beta} = \begin{bmatrix} \mathbf{S}(n_{\beta} - 1, 1) & -\mathbf{I}(n_{\beta} - 1) \end{bmatrix}. \tag{15}$$

The following proof will make use of the identity

$$\mathbf{S}(n,m)\mathbf{S}(m,p) = m\mathbf{S}(n,p). \tag{16}$$

Theorem:

$$\left(\mathbf{I}(n_{\beta}) - \mathbf{F}_{\beta}^{T} (\mathbf{F}_{\beta} \mathbf{W}_{\beta} \mathbf{F}_{\beta}^{T})^{-1} \mathbf{F}_{\beta} \mathbf{W}_{\beta}\right) = n_{\beta}^{-1} \mathbf{S}(n_{\beta}). \tag{17}$$

Proof:

$$(\mathbf{F}_{\beta}\mathbf{W}_{\beta}\mathbf{F}_{\beta}^{T})^{-1} = n_{\beta}^{-1}\mathbf{M}_{\beta}\left(\mathbf{I}(n_{\beta}-1) + \mathbf{S}(n_{\beta}-1)\right)^{-1}$$
$$= n_{\beta}^{-1}\mathbf{M}_{\beta}\left(\mathbf{I}(n_{\beta}-1) - n_{\beta}^{-1}\mathbf{S}(n_{\beta}-1)\right), \quad (18)$$

and

$$\mathbf{F}_{\beta}^{T}\left(\mathbf{I}(n_{\beta}-1)-n_{\beta}^{-1}\mathbf{S}(n_{\beta}-1)\right)\mathbf{F}_{\beta}=\mathbf{I}(n_{\beta})-n_{\beta}^{-1}\mathbf{S}(n_{\beta}). \quad (19)$$

So,

$$\mathbf{I}(n_{\beta}) - \mathbf{F}_{\beta}^{T} (\mathbf{F}_{\beta} \mathbf{W}_{\beta} \mathbf{F}_{\beta}^{T})^{-1} \mathbf{F}_{\beta} \mathbf{W}_{\beta}$$

$$= \mathbf{I}(n_{\beta}) - n_{\beta}^{-1} \mathbf{M}_{\beta} \mathbf{F}_{\beta}^{T} \left(\mathbf{I}(n_{\beta} - 1) - n_{\beta}^{-1} \mathbf{S}(n_{\beta} - 1) \right) \mathbf{F}_{\beta} \mathbf{W}_{\beta}$$

$$= n_{\beta}^{-1} \mathbf{S}(n_{\beta}). \tag{20}$$

Corollary:

The fixed joints of body β can be solved by setting the velocity of all its sub-bodies $i \in [1..n_{\beta}]$ to

$$\left[\left(\mathbf{v}^{S} - \mathbf{W}\mathbf{F}^{T} (\mathbf{F}\mathbf{W}\mathbf{F}^{T})^{-1} \mathbf{F}\mathbf{v}^{S} \right)_{\beta} \right]_{i} = n_{\beta}^{-1} \sum_{k=1}^{n_{\beta}} [\mathbf{V}_{\beta}]_{k}. \tag{21}$$

5 Proof That a Solution of the Split System is a Solution of the Original System

Theorem:

$$\begin{bmatrix} \mathbf{z}_{C} \\ \mathbf{z}_{F} \end{bmatrix} = \text{MLCP} \left(\begin{bmatrix} \mathbf{C} \\ \mathbf{F} \end{bmatrix} \mathbf{W} \begin{bmatrix} \mathbf{C} \\ \mathbf{F} \end{bmatrix}^{T}, \begin{bmatrix} \mathbf{q} \\ \mathbf{0} \end{bmatrix} \right)$$

$$\Rightarrow \mathbf{z}_{C} = LCP(\mathbf{J}\mathbf{M}^{-1}\mathbf{J}^{T}, \mathbf{q}). \tag{22}$$

Proof:

Suppose that $\left[\begin{array}{c} \mathbf{z}_C \\ \mathbf{z}_F \end{array} \right]$ is a solution of the split system, so that

$$\mathbf{C}\mathbf{v}^S + \mathbf{q} \ge 0 \perp \mathbf{z}_C \ge 0, \tag{23}$$

where \mathbf{v}^S is the velocity,

$$\mathbf{v}^s = \mathbf{W}(\mathbf{C}^T \mathbf{z}_C + \mathbf{F}^T \mathbf{z}_F). \tag{24}$$

Let $e(\mathbf{v}^s)$ be the vector consisting of the velocity of the first subbody of each body. We need to show that \mathbf{z}_C is a solution of the unsplit system. We do this in two stages. First we show that if impulse \mathbf{z}_C is applied to the unsplit system then the velocity of the bodies is $e(\mathbf{v}^s)$. Then we show that the velocities $e(\mathbf{v}^s)$ satisfy the constraints of the unsplit system. Applying impulse \mathbf{z}_C to the unsplit system gives the following velocity for each body β ,

$$(\mathbf{M}^{-1}\mathbf{J}^{T}\mathbf{z}_{C})_{\beta}$$

$$= \mathbf{W}_{\beta}n_{\beta} \sum_{k=1}^{n_{b}} (\mathbf{C}_{\beta}^{T}\mathbf{z}_{C})_{k}$$

$$= \mathbf{W}_{\beta} \left(\mathbf{I} - \mathbf{F}_{\beta}^{T} (\mathbf{F}_{\beta}\mathbf{W}_{\beta}\mathbf{F}_{\beta}^{T})^{-1} \mathbf{F}_{\beta}\mathbf{W}_{\beta} \right) \mathbf{C}_{\beta}^{T}\mathbf{z}_{C}$$

$$= \left[\mathbf{W} (\mathbf{C}^{T}\mathbf{z}_{C} + \mathbf{F}^{T}\mathbf{z}_{F})_{\beta} \right]_{1}. \tag{25}$$

Therefore.

$$\mathbf{M}^{-1}\mathbf{J}^T\mathbf{z}_C = e(\mathbf{v}^S). \tag{26}$$

Now we show that the velocities of the split system satisfy the constraints of the unsplit system,

$$(\mathbf{C}\mathbf{v}^{S})_{\alpha} = \sum_{\beta=1}^{n} \mathbf{C}_{\alpha\beta} \mathbf{V}_{\beta}$$

$$= \sum_{\beta=1}^{n} \sum_{j=1}^{n_{\beta}} [\mathbf{C}_{\alpha\beta}]_{1,j} \mathbf{v}_{\beta}$$

$$= (\mathbf{J}e(\mathbf{v}^{S}))_{\alpha}. \tag{27}$$

So,

$$\mathbf{C}\mathbf{v}^{S} + \mathbf{q} \ge 0 \perp \mathbf{z}_{C} \ge 0$$

$$\Longrightarrow \mathbf{J}\mathbf{M}^{-1}\mathbf{J}^{T}\mathbf{z}_{C} + \mathbf{q} \ge 0 \perp \mathbf{z}_{C} \ge 0. \tag{28}$$

References

MURTY, K. G. 1988. Iterative methods for LCPs. In *Linear Complementarity, Linear and Non-linear Programming*. Helderman Verlag, ch. 9.

TONGE, R., BENEVOLENSKI, F., AND VOROSHILOV, A. 2012. Mass splitting for jitter-free parallel rigid body simulation. In the Proceedings of ACM SIGGRAPH 2012.