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1 Introduction

This document supplements the SIGGRAPH paper, Mass Splitting
for Jitter-Free Parallel Rigid Body Simulation [Tonge et al. 2012],
which defines the variables and notations used here.

2 Convergence Proof for Scalar Mass Split-
ting Algorithm

Lemma: For vi ∈ Rm,1≤ i≤ n,(
n

∑
i=1

vi

)
.

(
n

∑
i=1

vi

)
≤ n

n

∑
i=1

vi.vi (1)

Proof:

First we prove for all xi ∈ R,(
n

∑
i=1

xi

)2

≤ n
n

∑
i=1

x2
i (2)

Proof is by induction on n, using the inequality 2xy < x2 +y2. Now
apply Equation 2 to every element of vi in Equation 1.

Theorem:

The following iteration converges,

zr+1 = (zr−E(q+Nzr))+

Eii =
(

∑
n
j=1 Ji j(n jM−1

j )JT
i j

)−1
. (3)

Proof:

We will rely on [Murty 1988], equation 9.10. For each body i,
its inverse mass matrix M−1

i is positive definite, and for j = 1,2
nbi, j > 0, JT

i, j is non-zero, hence each element of the diagonal matrix
E−1 is positive. This satisfies the first condition of Eq. 9.8 [Murty
1988]. The second condition applied to iteration (3) simplifies to
2E−1 −N > 0. Since E−1 is positive-definite, it is sufficient to
prove that E−1−N is positive semi-definite. Since for each body i
M−1

i is positive definite, it is possible to factor it into M−1
i =QiQT

i ,
where Qi is lower triangular. For arbitrary x, define v as follows,

vi, j = Qbi, j J
T
i, jxi. (4)

We need the index set of the non-zero blocks of J that affect body
k, defined as follows,

C(k) = {(i, j)|bi, j = k}, (5)
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so |C(k)|= nk. Now,

xT E−1x =
m

∑
i=1

(
nbi,1 vi,1.vi,1 +nbi,2 vi,2.vi,2

)
(6)

=
n

∑
k=1

(
nk ∑

(i, j)∈C(k)
vi, j.vi, j

)
(7)

xT Nx =
n

∑
k=1

(
∑

(i, j)∈C(k)
vi, j

)
.

(
∑

(i, j)∈C(k)
vi, j

)
(8)

By the previous lemma, every term of xT E−1x is greater or equal
to the corresponding term of xT Nx and

xT E−1x≥ xT Nx. (9)

So, xT (E−1−N)x≥ 0, which means that E−1−N is positive semi-
definite and therefore the iteration converges.

3 Convergence Proof for Iterative MLCP with
Exact Joints

Apply LCP iteration (9.9) from [Murty 1988] with λ = 1, ω = 1,

E =

[
D−1

CC 0
0 N−1

FF

]
, K =

[
LCC 0
NFC 0

]
, (10)

and define a new projection operator P that applies (+) only to zC.
This gives the iteration

zr+1
C =

(
zr

C−D−1
CC

(
qC +LCCzr+1

C +
[

UCC NCF
][ zC

zF

]r))+

(11)

zr+1
F = zr

F −N−1
FF

(
qF +

[
NFC NFF

][ zr+1
C
zr

F

])
, (12)

which has the same form as the block mass splitting iteration from
the paper. To prove convergence we just need to show [Murty 1988]
that for all y≥ 0, (

zP− z
)T

E−1
(

zP−y
)
≥ 0. (13)

Proof: (
zP− z

)T
E−1

(
zP−y

)
=

[
z+C − zC
zF − zF

]T [ DCC 0
0 NFF

][
z+C −yC
zF −yF

]
=(z+C − zC)

T DCC(z+C −yC)

≥0 (by theorem 9.8 in [Murty 1988]). (14)

4 Analytical Solution for Fixed Joints

For notational convenience, let S(n,m) be a matrix of size (6n,6m)
whose elements are all one, let I(n,m) be the identity matrix of the



same size and define S(n) = S(n,n) and I(n) = I(n,n). Now we can
write

Fβ =
[

S(nβ −1,1) −I(nβ −1)
]
. (15)

The following proof will make use of the identity

S(n,m)S(m, p) = mS(n, p). (16)

Theorem:(
I(nβ )−FT

β
(Fβ Wβ FT

β
)−1Fβ Wβ

)
= n−1

β
S(nβ ). (17)

Proof:

(Fβ Wβ FT
β
)−1 = n−1

β
Mβ

(
I(nβ −1)+S(nβ −1)

)−1

= n−1
β

Mβ

(
I(nβ −1)−n−1

β
S(nβ −1)

)
, (18)

and

FT
β

(
I(nβ −1)−n−1

β
S(nβ −1)

)
Fβ = I(nβ )−n−1

β
S(nβ ). (19)

So,

I(nβ )−FT
β
(Fβ Wβ FT

β
)−1Fβ Wβ

=I(nβ )−n−1
β

Mβ FT
β

(
I(nβ −1)−n−1

β
S(nβ −1)

)
Fβ Wβ

=n−1
β

S(nβ ). (20)

Corollary:

The fixed joints of body β can be solved by setting the velocity of
all its sub-bodies i ∈ [1..nβ ] to[(

vS−WFT (FWFT )−1FvS
)

β

]
i
= n−1

β

nβ

∑
k=1

[Vβ ]k. (21)

5 Proof That a Solution of the Split System is
a Solution of the Original System

Theorem: [
zC
zF

]
= MLCP

([
C
F

]
W
[

C
F

]T
,

[
q
0

])
=⇒

zC = LCP(JM−1JT ,q). (22)

Proof:

Suppose that
[

zC
zF

]
is a solution of the split system, so that

CvS +q≥ 0 ⊥ zC ≥ 0, (23)

where vS is the velocity,

vs = W(CT zC +FT zF ). (24)

Let e(vs) be the vector consisting of the velocity of the first sub-
body of each body. We need to show that zC is a solution of the
unsplit system. We do this in two stages. First we show that if
impulse zC is applied to the unsplit system then the velocity of the
bodies is e(vs). Then we show that the velocities e(vs) satisfy the

constraints of the unsplit system. Applying impulse zC to the un-
split system gives the following velocity for each body β ,

(M−1JT zC)β

= Wβ nβ

nb

∑
k=1

(CT
β

zC)k

= Wβ

(
I−FT

β
(Fβ Wβ FT

β
)−1Fβ Wβ

)
CT

β
zC

=
[
W(CT zC +FT zF )β

]
1
. (25)

Therefore,
M−1JT zC = e(vS). (26)

Now we show that the velocities of the split system satisfy the con-
straints of the unsplit system,

(CvS)α =
n

∑
β=1

Cαβ Vβ

=
n

∑
β=1

nβ

∑
j=1

[Cαβ ]1, jvβ

= (Je(vS))α . (27)

So,

CvS +q≥ 0 ⊥ zC ≥ 0

=⇒ JM−1JT zC +q≥ 0 ⊥ zC ≥ 0. (28)
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