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1 Introduction

This document supplements the SIGGRAPH paper, Mass Splitting
for Jitter-Free Parallel Rigid Body Simulation [Tonge et al. 2012],
which defines the variables and notations used here.

2 Convergence Proof for Scalar Mass Split-
ting Algorithm

Lemma: Forvi e R",1 <i<n,
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Proof is by induction on n, using the inequality 2xy < x> +y2. Now
apply Equation 2 to every element of v; in Equation 1.
Theorem:

The following iteration converges,
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Proof:

We will rely on [Murty 1988], equation 9.10. For each body i,
its inverse mass matrix Mi—l is positive definite, and for j = 1,2
np, ; >0, JZJ- is non-zero, hence each element of the diagonal matrix
E~! is positive. This satisfies the first condition of Eq. 9.8 [Murty
1988]. The second condition applied to iteration (3) simplifies to
2E-! —N > 0. Since E~! is positive-definite, it is sufficient to
prove that E~! — N is positive semi-definite. Since for each body i
Mi_l is positive definite, it is possible to factor it into Mi_1 = Q,-QiT,
where Q; is lower triangular. For arbitrary x, define v as follows,

Vi = Qp I xi. 4)

We need the index set of the non-zero blocks of J that affect body
k, defined as follows,

C(k) = {(ivj)“)i,j = k}7 5)
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s0 |C(k)| = ng. Now,
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By the previous lemma, every term of x’ E~!x is greater or equal
to the corresponding term of x” Nx and

x'E~'x > x"Nx. ()]

So, x! (E*1 —N)x > 0, which means that E~! —N s positive semi-
definite and therefore the iteration converges.

3 Convergence Proof for Iterative MLCP with
Exact Joints

Apply LCP iteration (9.9) from [Murty 1988] with A =1, ® =1,
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and define a new projection operator P that applies (+) only to zc.
This gives the iteration
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which has the same form as the block mass splitting iteration from
the paper. To prove convergence we just need to show [Murty 1988]
that for ally > 0,
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Proof:
T i(.p
(" -2) B ()
T
_ Z&L —17c Dcc 0 Z&L —-Yc
Zp —1If 0 Ngr Zr —YF
=(zf —2c) " Dec(zd —ye)
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4 Analytical Solution for Fixed Joints

For notational convenience, let S(n,m) be a matrix of size (6n,6m)
whose elements are all one, let I(n,m) be the identity matrix of the



same size and define S(n) = S(n,n) and I(n) =I(n,n). Now we can
write

Fﬁ = [ S(nﬁ - 17 1) —I(HB - 1) ] (15)

The following proof will make use of the identity
S(n,m)S(m, p) = mS(n, p). (16)
Theorem:
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Proof:
(FpWpFg) ™ =ng'Mg (I(ng — 1) +S(ng — 1)) "'
= n5'Mg (I(n,;—l)—nEIS(nﬁ—l)), (18)
and

¥} (I(nﬁfl)anIS(nﬁfIDFﬁ:I(nﬁ)anlS(nB). (19)

So,
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Corollary:

The fixed joints of body f can be solved by setting the velocity of
all its sub-bodies i € [1..ng] to
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5 Proof That a Solution of the Split System is
a Solution of the Original System

Theorem:

zc =LCPM 1T q). (22)
Proof:

C

Suppose that { ;F } is a solution of the split system, so that

Cv$+q>0Lze>0, (23)
where v¥ is the velocity,
v =W(CTze +FTzp). (24)

Let e(v*) be the vector consisting of the velocity of the first sub-
body of each body. We need to show that z¢ is a solution of the
unsplit system. We do this in two stages. First we show that if
impulse z¢ is applied to the unsplit system then the velocity of the
bodies is e(v*). Then we show that the velocities e(v*) satisfy the

constraints of the unsplit system. Applying impulse z¢ to the un-
split system gives the following velocity for each body f3,
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Therefore,
M1 20 = e(v5). (26)

Now we show that the velocities of the split system satisfy the con-
straints of the unsplit system,
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So,
CVS+q>0L1zc>0
— My 2c +q>0Lzc>0. (28)
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