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Figure 1: Left: 5000 boxes with 40000 contacts coming to rest on a non-convex triangle mesh without jitter, simulated on an NVIDIA GTX580
at over 60 FPS. Middle: Mass splitting used in a real-time fracture simulation. The debris have irregular shapes and large mass ratios. Right:
The method allows us to simulate large scale building destruction in real-time in a video game.

Abstract

We present a parallel iterative rigid body solver that avoids com-
mon artifacts at low iteration counts. In large or real-time simula-
tions, iteration is often terminated before convergence to maximize
scene size. If the distribution of the resulting residual energy varies
too much from frame to frame, then bodies close to rest can visibly
jitter. Projected Gauss-Seidel (PGS) distributes the residual accord-
ing to the order in which contacts are processed, and preserving the
order in parallel implementations is very challenging. In contrast,
Jacobi-based methods provide order independence, but have slower
convergence. We accelerate projected Jacobi by dividing each body
mass term in the effective mass by the number of contacts acting on
the body, but use the full mass to apply impulses. We further accel-
erate the method by solving contacts in blocks, providing wallclock
performance competitive with PGS while avoiding visible artifacts.
We prove convergence to the solution of the underlying linear com-
plementarity problem and present results for our GPU implemen-
tation, which can simulate a pile of 5000 objects with no visible
jittering at over 60 FPS.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; 1.6.8
[Simulation and Modeling]: Types of Simulation—Animation

Keywords: rigid bodies, non-smooth dynamics, contact, friction

1 Introduction

Rigid body dynamics is widely used in applications ranging from
movies to engineering to video games. Piles of objects are partic-
ularly common, because ultimately, gravity pulls all rigid bodies
to the ground. Some of the most visually interesting simulations
involve destruction, such as projectile impacts and explosions, and
these can generate large piles of debris. In mechanical engineer-
ing some of the most computationally challenging problems involve
simulating interaction with large resting systems of soil particles or
rocks. Piles require stable simulation of static friction, dynamic
friction and resting contact, which presents many challenges.

In large or real-time simulations, the computation budget can be
small compared to the number of rigid body contacts. In these cases
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we must use iterative methods, terminating the iteration before con-
vergence. By stopping early we introduce residual energy into the
system, which can cause objects near rest to jitter. See the accom-
panying video for examples of these artifacts.

A commonly used iterative algorithm is projected Gauss-Seidel
(PGS), which solves contacts in sequence. When we terminate the
iteration, the last contact solved has no error and the other contacts
have non-zero error, resulting in an uneven distribution of the resid-
ual energy. On single threaded implementations we can ensure that
the distribution of this error is consistent from frame to frame by,
for example, ensuring that collisions are detected in the same order
each frame and that addition and deletion of bodies do not disrupt
the order. Unfortunately, things are not as straightforward for par-
allel implementations.

Due to the widespread availability of multi-core CPUs and GPUs,
parallel computing is increasingly being used to simulate rigid bod-
ies. PGS has limited parallelism, as updates to bodies having
multiple contacts must be serialized to ensure they are not lost
and the connectivity between bodies can be complex, especially
in piles. This serialization changes the order in which constraints
are processed, often changing it dramatically from frame to frame.
Operating systems and GPU schedulers can also introduce non-
determinism into the order of operations. For these reasons it is
very challenging to avoid jittering with parallel PGS, and due to the
serialization its performance does not scale well as more threads are
added.

In real-time applications such as games, the designer does not know
in advance what the player is going to do and which objects are
going to interact. This means that ad-hoc methods that require pa-
rameter tuning to converge are not suitable. Ideally, solvers should
come with a convergence proof so that the designer can be sure that
the simulation will be stable no matter what the player does.

1.1 Contributions

Our first contribution is a projected Jacobi-based method that has
guaranteed convergence like PGS, but freedom from jitter and par-
allel scaling like Jacobi. Our novel idea is to divide each body mass
term of the effective mass by the body’s contact count, while using
the full body mass to apply impulses.

We extend the method to accelerate convergence by solving blocks
of contacts with PGS, and using projected Jacobi to combine the
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blocks. Again we modify the effective mass of the Jacobi iteration,
this time dividing the mass terms of the effective mass by the num-
ber of contact blocks per body, but again using the full mass to apply
impulses. The improved convergence combined with its lower cost
per iteration, the method’s wall-clock performance is competitive
with parallel PGS. The method is especially suited to GPU exe-
cution and our GPU implementation of the second method allows
real-time (> 60 FPS) simulation of 5K bodies with 40K contacts.

Finally, we prove that the block method converges, which is im-
portant in open-world applications such as games. We prove that
the method converges to the LCP solution, so we get the benefits
of the LCP model such as correct momentum propagation and sta-
ble stacking. We first give a physical interpretation of the effective
mass modification in terms of splitting each body into sub-bodies
with equal position and spatial extent, one per block of contacts,
with the mass divided equally among them. Running parallel PGS
on this split system is operationally identical to our block method,
and PGS provably converges, so our method does too. In the sup-
plement we prove that solutions to the split system satisfy the orig-
inal LCP.

2 Related Work

Many authors have modelled contact dynamics as a complemen-
tarity problem [Baraff 1991; Stewart and Trinkle 1996; Tasora
et al. 2008]. Early work discretized the contact model at the force-
acceleration level, with different cases for colliding and resting con-
tact. Later, time-stepping methods were introduced that unified the
modelling of contact and moved to position-impulse [Stewart and
Trinkle 1996] or velocity-impulse [Anitescu and Potra 1997] dis-
cretization. Systems of velocity-level non-penetration constraints
can be modelled as linear complementarity problems, but allow po-
sition error, necessitating the use of constraint stabilization [Cline
and Pai 2003].

Complementarity problems arising from rigid body systems can be
either solved directly or iteratively. Among the iterative solvers,
PGS is widely used [Murty 1988; Erleben 2004; Catto 2005;
Harada 2009; Tonge et al. 2010]. Recently there has been interest
in methods that have better convergence than PGS. Silcowitz et al.
[2010] describe a nonsmooth nonlinear conjugate gradient method.
Renouf and Alart [2005] describe projected gradient and conjugate
projected gradient methods for rigid body LCPs, and Dostal and
Schoberl [2005] describe a provably convergent projected conju-
gate gradient method that could be applied to the rigid body prob-
lem. Other methods augment PGS with a different solver to achieve
a balance between speed and quality, for example, Morales et al.
[2008] interleave PGS solves with exact subspace solves. The ad-
vantage of methods based on conjugate gradients is that they have
excellent behavior given enough iterations, but the disadvantages
are that each iteration is much more expensive than a PGS iteration
and their behavior is less good at very low iteration counts.

Jacobi-based solvers are less widely used, as the basic method
doesn’t converge for some common rigid body systems, and when
it does, it is slower than PGS. The LCP literature describes a num-
ber of ways to guarantee or improve Jacobi convergence [Cottle
et al. 1992; Murty 1988], including line search, block and scaling
methods.

Jitter is a common problem in rigid body physics engines [Gustafs-
son 2010], which particularly affect piles of objects. Many engines
[Coumans 2011; NVIDIA 2011; Lengyel 2011] detect when ob-
jects should be at rest and temporarily remove them from the sim-
ulation, referred to as sleeping. Hsu and Keyser [2010] describe
a sleeping method for piles, and Parker and O’Brien [2009] avoid
jitter by applying only damping forces at contacts. Guendelman

et al. [2003] calculate impulses from the ground up to accelerate
convergence when simulating piles.

We describe a method for solving all contacts in parallel in lin-
ear time. Other approaches with similar parallel scaling (but dif-
ferent behavioral properties) include the penalty method [Harada
2007], approximate momentum propagation [Kaufman et al. 2005]
and oriented particle shape matching [Miiller and Chentanez 2011].

Rigid body contact dynamics on parallel computers has a long his-
tory, but recently there has been renewed interest due to the arrival
of multi-core CPUs and GPUs. Examples of parallel GPU rigid
body solvers include Tasora et al. [2008], Harada [2009], Tonge et
al. [2010] and Harada [2011].

Kaufman et al. [2008] show how a non-penetration solver can be
coupled loosely but robustly with a friction solver, allowing the fric-
tion model and solver to be chosen independently from the non-
penetration solver. Alternatively, the solution of non-penetration
and friction can be tightly coupled. Examples of friction models
that have been added to PGS in this way include Tresca friction
[Renouf and Alart 2005], polyhedral approximation of Coulomb
friction [Stewart and Trinkle 1996], and continuous Coulomb fric-
tion [Tasora et al. 2008; Daviet et al. 2011].

3 Background

3.1 Rigid Body Contact Dynamics

The rigid body contact model and discretization that we use have
been described before [Anitescu and Potra 1997], so we provide
only a brief summary. We consider a scene haviné; n rigid bod-
ies with positions x € R6", external forces f, € R® and masses
M € R0 Collision detection identifies m contacts between the
rigid bodies, represented by constraints ®(x) > 0 with Jacobian
0®/dx = J € R™*" For simplicity of description we omit con-
straint stabilization, so the unknowns are the Lagrange multipliers
A € R™ necessary to satisfy the time derivative of the constraints.
We also omit friction, which we add in section 6.

Contacts must satisfy the velocity Signorini condition: forces must
not be attractive (A > 0), velocities must move the system out of
penetration (Jv > 0), and a force should be applied at a contact only
if that contact is not separating, written as A > 0 L Jv > 0. Putting
this all together, the continuous model is the following differential
variational inequality,

Mx = JT A +f, )
X=v 2)
A>0LJv>0. 3)

3.2 Time Stepping

We discretize the model using a semi-implicit stepping scheme with
time step &, and introduce the constraint impulse z = hA,

M(View — Vold) = Jz+ hf,
Xnew — Xold = HVnew
220 L Jvpew > 0. 4
The Signorini condition causes the discretized model to be an LCP
rather than a linear system. Let x := LCP(A,b) be defined as
find x € R™ such that, for all i = 1...m,
x; > 0and (Ax+b); >0and
x; =0or (Ax+b); =0. 5)
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So we can solve the discretized model with

V0= vga +IM 'L,

q=J
N — JMflJT
2=LCP(N,q). 6)

There are two well-known iterative methods for solving this sym-
metric LCP, projected Gauss-Seidel (PGS) and projected Jacobi.

3.3 Projected Jacobi

Projected Jacobi solves each constraint in isolation and then merges
the results, allowing efficient parallel implementation. Abstractly,
it generates the following iteration,

7 =@ -D (N2 +q))", %)

where D = diag(N) and (x"); = max(0,x;). In the rigid body
model, D;l can be interpreted as being the effective mass along
the contact normal, that is, the mapping between constraint space
velocity and constraint space impulse at contact i,

—1
E;=D;'= <Z?:1JUM;IJ"TJ'> ' ®

Rather than implementing Equation 7 directly, applications typi-
cally update velocities at each iteration in order to reduce storage
and computation costs,

Zr+1 — (Zr 7E(q+JVr))+

Vr+1 —v" +M71JT(Z1’+1 7Zr). (9)

Convergence is guaranteed if 2D — N is positive definite [Murty
1988], but many rigid body systems don’t converge with Jacobi.

3.3.1 Modified Jacobi Methods

There are a number of ways to modify Jacobi to guarantee conver-
gence. One possibility [Cottle et al. 1992] is to add a line search
step,
zr+0.5 — (Zr _ D71 (NZr + q))+
d" = zr+0.5 7
o = argmin f(z+ ad")

0<a
0<z+ad"

f(z)= %ZTNZ +127q

' =7 +od. (10)

Another is to scale D~! using p(N), the spectral radius of N
72+t — (Zr _ (DDil(NZr—"q))J’»

2
O < 55 Y

Bridson et al. [2002] proposed a Jacobi modification for cloth sim-
ulation that can be adapted to the rigid body iteration (Equation 9):
Let Ny be the number of bodies contacting body 8 and divide the

impulse applied to body by ny,,
zr+1 — (erE(q+JVr))+
v =y fM_ldiag(n]_l,m DI (@ 7). (12)

However, Bridson doesn’t specify the convergence conditions for
the method or give a proof.

Figure 2: Coloring for parallel projected Gauss-Seidel. Three col-
ors are needed to avoid parallel threads writing to the same bodies,
first constraints {0,1,2} are processed, then {3,5} and finally {4,6}.
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Figure 3: Histogram of number of constraints processed in parallel
per color for the frame shown in Figure 1, middle. This example
has 277 bodies and 665 contacts and the greedy coloring algorithm
produces 15 colors.

3.4 Projected Gauss-Seidel

PGS solves each constraint individually in sequence. Let L be the
(strict) lower triangle of N. Abstractly, PGS generates the following
iteration,

Zr+1 _ (zr—Dfl(q—i-Ler +(N—L)zr))+. (13)

Again, applications generally use an equivalent iteration [Erleben
2004; Tonge et al. 2004] that updates the velocity after processing
each constraint,

zl(+1 — (zlr _Eii(qi+Jivrm+i71))+

Vrm+i _ Vrm+i71 + MflJlT(Zthl _ er) (14)
The size of z is m (the number of contacts), and the indexing of v
is arranged so that the velocity used to calculate the first element of
each iteration (i = 1) is the velocity calculated after the last element
(i = m) of the previous iteration.

3.4.1 Parallel Projected Gauss-Seidel

Ideally we’d like to process each contact in parallel on a sepa-
rate thread. However, each body can be in contact with more than
one other body, so if PGS were parallelized naively then multiple
threads could try to update the same body simultaneously, causing
velocity updates to be lost and convergence to be affected. A com-
mon solution is contact coloring [Hege and Stiiben 1991; Harada
2011]. Contact coloring partitions (or colors) the contacts so that
each body is referenced at most once in each partition. The PGS
solver can then process each color sequentially, processing the con-
tacts within each color in parallel. See Figure 2 for an example of
coloring.

The number of colors required depends on A, the maximum num-
ber of contacts per body over all the bodies. From Vizing’s theorem
[1964] the minimum number of colors required is either A or A+ 1.
Finding the optimal coloring is NP-hard so we use a parallel greedy
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+ fixed joint

Contact blocks

Figure 4: Mass splitting. Top: The original body is split into two
sub-bodies, each with the same spatial extent but with half the mass.
A fixed joint holds them together in the same place. Bottom: A
system with two contact blocks, each assigned to a separate sub-
body so that the blocks can be solved in parallel.

algorithm, which gives at most 2A — 1 colors. In piles of objects, A
can be quite high and generally, the first few colors contain a large
proportion of the contacts, but the following colors contain fewer
and fewer contacts, see Figure 3. As the colors must be processed
sequentially, the time taken by each iteration is multiplied by the
number of colors, reducing the speedup of parallel PGS versus se-
rial PGS. Also, on architectures (such as GPUs) with hundreds of
cores, most of them are idle for most of the iteration. In our method
we harness this unused processing power to reduce jitter.

4 Mass Splitting Solver

Our novel idea is to take the Jacobi algorithm and divide each body
mass term in the effective mass (Equation 8) by the number of con-
tacts affecting it, but use the full mass to apply the impulses. In
Section 5 we show why this is an appropriate choice. Let n; be the
number of contacts involving body i, then the mass splitting algo-
rithm is

+
Zr-H — (z'fES(quJvr))
Vr+1 :Vr+M71JT(zr+l _zr)
S n —1 4T -1
ES = (zj:]n,J,»ij Jij) . (15)

This is different from Bridson’s method (Equation 12) where the
impulse application is scaled, but the effective mass uses the full
mass. We prove that our method converges in the supplement.

4.1 Block Mass Splitting Solver

A standard method for parallelizing solvers is to partition a sys-
tem into blocks, solving the blocks on separate threads using one
method and then combining the results in an outer iteration, possi-
bly using a different method. Such block splitting methods for LCP
are described in Cottle et al. [1992]. We improve upon the con-
vergence of our basic method by solving contacts in blocks, using
PGS to solve the contacts within the blocks, and projected Jacobi to
combine the blocks. Solving all the contacts in a block on a single
thread allows us to use serial PGS, which converges faster than Ja-
cobi. The collision detection system typically generates more than
one (point) contact to represent the area of contact between each
body pair, so a natural choice is to partition the contacts by body
pair. See Figure 5 for an example. Again we modify the effective
mass to accelerate convergence, but now we divide the mass of each
body S by N the number of body pairs it belongs to,

+
= <za —Eqy (qa + Lozl ' 4+ (Ng — Lo )zl + Z Nayz;,>>

y#o

N -1
Bl = (S 5, Mg M Uep? ) (16)

Here, a and 7 are used to index contact blocks and f3 is used to in-
dex bodies. [Mg];; represents element i, j of block &, of matrix
M. In particular, [J aﬁ]i represents the effect of contact i from con-
tact block o on body 3. We describe how we derived this solver in
the next section, see Algorithm 1 for the final pseudocode.

5 Derivation and Convergence

Unlike the scalar algorithm, we do not have a direct convergence
proof for the block solver. Instead, we transform the original
system into a system of split masses and fixed joints. We show
that solving this system with PGS interleaved with an exact fixed
joint solver converges and is operationally equivalent to running
the block solver on the original system. Given that this interleaved
solver provably converges, then our block algorithm must also con-
verge, and in the supplement we prove that solutions of the split
system are also solutions of the original system. This also demon-
strates why scaling the terms of the effective mass, but not the ap-
plied impulses, was the right choice in section 4.

We construct the split system by splitting each original body into
sub-bodies, one for each contacting body. Each sub-body has the
same spatial extent as the original body, but the mass of the origi-
nal body is divided equally between the sub-bodies. We then add
fixed joints to ensure that the position and orientation of all the sub-
bodies are equal. See Figure 4 for an example.

The key insight is that fixed joints have a closed form solution: the
final velocity of every sub-body should be the average of all the
sub-body velocities.

5.1 Splitting the Bodies

We now describe in detail how to construct the split system from
the original system. Let np, be the number of bodies contacting

original body 3. We split body f3 into Ny sub-bodies, giving a total
of

ns= Y . (17)
B=1

We split the mass and inertia of body 8 evenly between its sub-
bodies, so the inverse mass matrix of the sub-bodies of body S is

Wp =y, diag (M M1)€ B ag)
and the inverse mass matrix of the whole split system is
W:diag(wlv"'7wn)‘ (19)

Each sub-body is just a portion of the mass of the original body, so
the intial velocity of each sub-body Vg is set to the initial velocity
of the original body f3, giving whole system velocity vy,

Vﬁ V]
Ve=| @ [eRM y=| : |. (20)
Vﬂ Vn
The unconstrained velocity, vy is constructed from vy in the same
way.

5.2 Assigning the Contacts to the Split Bodies

Let the total number of contact blocks (body pairs) be p and the
number of contacts in block i be m;. We partition the original Jaco-
bian into p X n blocks, such that J,5 € R™ %6 represents the effect
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Figure 5: Block Mass Splitting. Top Left: System of three bodies
with four contacts. The contacts are grouped into two blocks of
two. In the split system, body c is split into two subbodies, one
contacting body a, and one contacting body b. Top Right: Contact
Jacobian for the original system. Bottom: Contact Jacobian for the
split system.

of the contacts in contact block o on body 8 and

Ju - Ji
J= . @2n

i o I
In each column block f of J, there are Nj, NON-ZETO blocks, corre-
sponding to the contact blocks that affect body . Let r ;,p be the
index of the jth non-zero block in column block B of J. We now

build the contact Jacobian of the split system, C, in such a way that
each sub-body has exactly one contact block,

Cy - Cyy
C= : : . (22)
Cpi - Cpy
Each block Cgp has Ripg sub-blocks, one for each sub-body of 3,

and [Cyg]1,; represents the effect of contact block ¢ on sub-body

Jj of original body 8. We assign the jth non-zero contact block of
body B in J to sub-body j of body f8 in C,

J ifo=r;
[Caﬁ]l,j{ of ! B (23)

0 otherwise.
Let by, and bq > be the bodies constrainted by contact block o and

Sa1 be the rank of contact block ¢ in its first body’s constraint list,
and Sq,2 be the rank in its second, so that

C s ifb, 1 =
J(xﬁ_{[ aplise  if o1 =P

: 24
[Caplise, ifba2=p. ey

For an example of how to construct C from J, see Figure 5.

5.3 Joining the Bodies Back Together

A fixed joint forces the position and orientation of two bodies to be

the same,
cb”( X1 ) =x; —X =0, 25)

and has Jacobian

8@1‘"]
FJ _
¥ = ox

—[1 -1]. (26)

For each body 8 we introduce g — 1 fixed joints to join the sub-
bodies together, giving a total of

Z npy —1). Q27

The Jacobian of the fixed joints of body B is

Is -Is O - 0
Fﬁ _ I 0 —Ig c Rénbﬁ Xé(”bﬁ —])7 (28)
. . . 0
Is O e 0 —Ig
and the Jacobian of all the fixed joints in the split system is
F:diag(Fl,-u,me) (29)

5.4 The Split System

We concatenate the split contact constraints and the fixed joints to
form system Jacobian [CTFT]T, and define

T
Vo =L vl
w (30)
{ Nye Nys F F
D¢ = diag(Ncc')~ (31
We can find impulses [z/zZ]7 that satisfy the contacts and fixed

joints simultaneously by solving the following mixed linear com-
plementarity problem (MLCP),

q+N ZC+Nfo>O 1 z.>0
Nfczc + fozf =0. (32)

This MLCP can be solved by interleaving PGS iterations for the
contacts with direct (exact) solves for the joints [Lacoursiere 2007],

+
Z£+1 _ (zz — D;Cl (q+Neeze + NCfo)>
= linsolve(N s, Nscze). (33)

See the supplementary document for a convergence proof. We
transform the iteration to a velocity iteration as follows,

Vol = v (34)
7, = (2, — D, (i + Civi)) (35)
v§l+' =vi+WC] (2 —2,) (36)
Vil = vemt L W linsolve(N pp, Fvi ). (37)

Equations 35 and 36 apply a single PGS iteration to all the con-
tacts at each iteration. Each sub-body has exactly one constraint,
so no coloring is required and the contacts can be safely computed
concurrently on m threads.
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5.5 Closed Form Solution for Fixed Joints

We could solve Equation 37 using a direct solver, but there is a
low-cost analytical solution,

r+1.1
’ ym+-1 m+1
()] =average ([(vo)g i [(vo)gli*!) . 38)
In other words, the fixed joints can be enforced simply by averaging
the sub-body velocities of each body at each iteration (see proof in
the supplementary document).

Algorithm 1 Block Mass Splitting Solver

1: for all contact blocks, & do

2 for all contacts in block, i do

3 [Pali =0

4 forall B € {by 1,bg 2} do

5: Pali = Pali+ Wapli(np, Mg ) I pal]
6 end for

7 P =Py

8 end for

9: end for

10: for all iterations do
11:  for all contact blocks, ¢ do {in parallel}

12: Bi.B2 = ba1, bz

13: Dy1,Dgo =Vg,,Vp,

14: for all contacts in block, i do {sequentially on thread o}
15: t= [ZCQL‘

16: [ZC(x}i = max (0, [ZCa]i — [plX]i(Ja,ﬁ| Dy, +Jo¢,ﬁ2DtX2))
17: forall j € {1,2} do

18: Daj=Daj+MEj1J£ﬁj(zCa—t)

19: end for

20: end for

21:  end for

22 a=0

23:  forall j € {1,2} do

24: for all o such that b ; = 8 do

25: a=a+Dg;

26: end for

27:  end for

28: end for

5.6 Implementation and Convergence Proof

The sub-body velocities of each body are equal at the end of each
iteration, so we can just store one velocity for each body. Also, we
don’t need to store the masses of the sub-bodies, since we can just
scale the corresponding body mass before it is used. Applying these
optimizations we get Equation 16 and making use of the definitions
of C, vy and W, we get Algorithm 1. The whole algorithm is par-
allelizable, as lines 22 to 27 can be implemented using a parallel
segmented reduction. The algorithm that we’ve derived is just PGS
applied to the split system, so it unconditionally converges, yet it
is operationally identical to our block splitting method, Equation
16. Therefore the block splitting method converges. See the sup-
plement for a proof that the block splitting method converges to the
solution of the original LCP.

6 Friction

We use a pyramid approximation to the coulomb friction cone. To
add this friction approximation to the discretized system, we need to

PGS Block Mass Splitting
Test Bodies Frame time (ms) FPS Frame time (ms) FPS
Boxes 5160 17.7 57 15.7 64
Chain 25 124 81 5.2 193
Chess 1000 24.9 40 25.5 39
Card house 58 4.8 206 3.5 282
Fracture 277 7.8 129 7.0 143

Table 1: Frame time.

represent boxed LCPs (BLCPs), which have both upper and lower
limits. Let x := BLCP(A,b,1,h) be defined as

find x € R™ such that, for all i = 1..m,
x; =l; and (Ax+b); > 0 or
x; =h; and (Ax+b),; <0 or

I; < x; < h; and (Ax+b); =0. (39)

All of the LCP algorithms in this paper can be turned into BLCP
algorithms by changing max(0,x;) to max(l;, min(x;, h;)).

Let D be the Jacobian matrix of the discretized friction pyramid and
let Niic = DM~ !D?. Now we can write the discretized model with
friction as a pair of coupled complementarity problems,

2=LCP (NJ(VO + M_IDTzfric)) (40)

Zgic = BLCP (NfﬁuD(VO +M'JTz), —diag(u)z,diag(u)2> .
41)

This is analagous to the pair of coupled projections in the staggered
projections model of Kaufman et al. [2008]. In their solver, Kauf-
man et al. interleave exact solves of the non-penetration subsystem
with exact solves of the friction subsytem using the updated nor-
mal forces to update the friction force limits between them. In our
setting, this would correspond to repeatedly running our mass split-
ting solver to convergence on Equation 40, followed by running it
to convergence on Equation 41. Our goal is to make a solver for
the coupled system that executes in as few iterations as possible, so
we don’t do this. Instead we repeatedly execute a single iteration of
the mass splitting solver on the non-penetration LCP, followed by
another on the friction BLCP.

7 Results

In this section we present measurements of jitter, convergence and
overall performance. We detect jitter by simulating the following
scenes, which should come to rest in a short amount of time. As
the bodies settle we check how close the total kinetic energy gets
to zero. The scenes include benchmarks from previous papers, but
note that we are comparing mass splitting against PGS and Jacobi
line search (all with staggered friction), not the solvers introduced
in those papers.

Boxes: We drop 5160 boxes onto a non-convex mesh containing
8192 triangles. The kinetic energy should decrease after the objects
start hitting the ground, eventually reaching zero.

Chain: We simulate a chain of 25 links fixed at one end. Eventually
the links in the free end of the chain should form a stable pile on
the ground.

Card house: We simulate a pyramid of 48 cards arranged into five
levels, inspired by Kaufman et al. [2008]. This is challenging be-
cause the friction and non-penetration forces have to be in perfect
balance for the house to stay up. We throw boxes at the card house
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Figure 6: Test cases (top row, left to right): Boxes, Chain, Card house and Fracture. Convergence graphs (middle row): average constraint
violation versus iteration count. [Jitter graphs (bottom row): average kinetic energy vs frame. Color key: Blue, Mass Splitting. Purple,

Jacobi Line Search. Red, PGS.

to check that it can regain equilibrium if only part of it is demol-
ished.

Fracture: We fracture three marble columns into the Voronoi re-
gions of a set of particles placed around a set of impact points. This
generates a wide range of body sizes and masses, a configuration
that is especially prone to jitter.

Our focus is measuring performance and quality at very low itera-
tion counts. A typical PGS iteration count for real-time applications
is five [NVIDIA 2011]. On the boxes test, the largest, parallel PGS
with five iterations takes at most 4 mS per frame. We found that 30
iterations of mass splitting can be performed in the same amount
of time, largely because mass splitting does not have to color and
serialize constraints. So in our jitter tests (Figure 6, bottom), we
compare five iterations of PGS against 30 iterations of mass split-
ting. In all the tests, mass splitting has less jitter than PGS. The
kinetic energy does not reach zero with our method, whether we
use double or single precision math, but from the video you can see
that the level of jitter is below perceptible levels. Table 1 shows the
performance of highly optimized CUDA implementations of PGS
and mass splitting, run on a GTX580 with 512 cores.

Limitations Although not popular in rigid body animation, the Ja-
cobi line search method [Cottle et al. 1992] does enjoy order inde-
pendent residual distribution and guaranteed convergence. Figure
6 (middle) compares the convergence of Jacobi line search against
PGS and mass splitting. Although our method has better conver-
gence for real-time iteration counts (< 50), Jacobi line search has
better convergence for larger iteration counts. The convergence of
our method is worse than PGS in all the tests, but this manifests
itself as increased contact compliance rather than jitter. This is par-
ticularly noticeable in the card house, which visibly bounces before
it comes to rest.

8 Conclusion

We have described a new iterative method for solving large rigid
body systems that avoids jitter at low iteration counts. This enables
the method to be used in large off-line or real-time simulations with-
out having to tune the system to prevent jittering. Our results show
that the performance of the solver is comparable with parallel PGS
and that a GPU physics engine implemented using the solver can
simulate a pile of 5000 bodies with 40000 contacts without jittering
at over 60 FPS.
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